Global Thermohaline Circulation and Ocean - Atmosphere Coupling

نویسندگان

  • Xiaoli Wang
  • Jochem Marotzke
چکیده

A global ocean general circulation model (GCM) with idealized geometry (two basins of equal size, Marotzke and Willebrand, 1991) is coupled to an energy balance atmospheric model with nonlinear parameterizations of meridional atmospheric transports of heat and moisture. With the coupled model that prescribes the atmospheric heat and moisture transports, the North Atlantic meridional mass overturning rates at equilibrium increases as the global hydrological cycle strength increases. Furthermore, the equilibrium overturning rate is primarily controlled by the hydrological cycle of the Southern Hemisphere, whereas the Northern Hemispheric hydrological cycle has little impact. The transition of the thermohaline circulation from the conveyor belt to the southern sinking state is controlled by two factors, the hydrological cycle in Northern Hemisphere, and the ratio of hydrological cycle strengths between the Northern Hemisphere and the Southern Hemisphere. Increasing either of them destabilizes the thermohaline circulation . The large-scale dynamics of the North Atlantic overturning is mainly interhemispheric, with the bulk of the overturning rising in the Southern Hemisphere. Multiple intermediate states exist that are only quantitatively different, under very small salinity perturbations. The coupled feedbacks between the thermohaline circulation and the atmospheric heat and moisture transports are demonstrated to exist in the coupled model, and all of them are positive. In addition, it is identified that the coupled feedbacks associated with the atmospheric transports in the Southern Hemisphere are also positive. Two different flux adjustments are used in the coupled model, with one adjusting the atmospheric transports efficiencies, the other adjusting the surface fluxes. Different flux adjustments influence the coupled feedback intensities, and hence the stability of the thermohaline circulation. Thesis Supervisor: Peter H. Stone Title: Professor of Meteorology Thesis Supervisor: Jochem Marotzke Title: Assistant Professor of Physical Oceanography

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of climate and ecosystem coupling: abrupt changes and multiple equilibria.

Interactions between subunits of the global climate-biosphere system (e.g. atmosphere, ocean, biosphere and cryosphere) often lead to behaviour that is not evident when each subunit is viewed in isolation. This newly evident behaviour is an emergent property of the coupled subsystems. Interactions between thermohaline circulation and climate illustrate one emergent property of coupling ocean an...

متن کامل

Evaluating the performance of Atmosphere-Ocean Global Circulation Models (AOGCM) in simulating temperature variable in Ahwaz and Abadan stations

Climate changes caused by global warming has presented challenges to human society. Studying the Changes of climate variables in the future decades by using output data’s of Atmosphere-Ocean Global Circulation Models (AOGCM) is a way of perusing climate fluctuation in a region. In this study, the focus is on the AOGCM proceeds in simulating of variable temperature in Ahwaz and Abadan stations. ...

متن کامل

Variability of the Thermohaline Circulation in an Ocean General Circulation Model Coupled to an Atmospheric Energy Balance Model

We examine the variability of the ocean’s thermohaline circulation in a Oceanic General Circulation Model (OGCM) coupled to a two dimensional atmospheric Energy Balance Model (EBM). The EBM calculates air temperatures by balancing heat fluxes, including that from the ocean surface; air temperature and ocean circulation evolve together without imposed temperature restrictions except specificatio...

متن کامل

LETTERS Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation

In this study, a mechanism is demonstrated whereby a large reduction in the Atlantic thermohaline circulation (THC) can induce global-scale changes in the Tropics that are consistent with paleoevidence of the global synchronization of millennial-scale abrupt climate change. Using GFDL’s newly developed global coupled ocean–atmosphere model (CM2.0), the global response to a sustained addition of...

متن کامل

Stochasticity and Spatial Resonance in Interdecadal Climate Fluctuations

Ocean{atmosphere interaction plays a key role in climate uctuations on interdecadal timescales. In this study, diierent aspects of this interaction are investigated using an idealized ocean{atmosphere model, and a hierarchy of uncoupled and stochastic models derived from it. The atmospheric component is an eddy-resolving two-level global primitive equation model with simpliied physical paramete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010